Explanatory Research | Definition, Guide, & Examples
Explanatory research is a research method that explores why something occurs when limited information is available. It can help you increase your understanding of a given topic, ascertain how or why a particular phenomenon is occurring, and predict future occurrences.
Explanatory research can also be explained as a “cause and effect” model, investigating patterns and trends in existing data that haven’t been previously investigated. For this reason, it is often considered a type of causal research.
Table of contents
- When to use explanatory research
- Explanatory research questions
- Explanatory research data collection
- Explanatory research data analysis
- Step-by-step example of explanatory research
- Explanatory vs. exploratory research
- Advantages and disadvantages of explanatory research
- Other interesting articles
- Frequently asked questions about explanatory research
When to use explanatory research
Explanatory research is used to investigate how or why a phenomenon takes place. Therefore, this type of research is often one of the first stages in the research process, serving as a jumping-off point for future research. While there is often data available about your topic, it’s possible the particular causal relationship you are interested in has not been robustly studied.
Explanatory research helps you analyze these patterns, formulating hypotheses that can guide future endeavors. If you are seeking a more complete understanding of a relationship between variables, explanatory research is a great place to start. However, keep in mind that it will likely not yield conclusive results.
Explanatory research questions
Explanatory research answers “why” and “how” questions, leading to an improved understanding of a previously unresolved problem or providing clarity for related future research initiatives.
Here are a few examples:
- Why do undergraduate students obtain higher average grades in the first semester than in the second semester?
- How does marital status affect labor market participation?
- Why do multilingual individuals show more risky behavior during business negotiations than monolingual individuals?
- How does a child’s ability to delay immediate gratification predict success later in life?
- Why are teens more likely to litter in a highly littered area than in a clean area?
Explanatory research data collection
After choosing your research question, there is a variety of options for research and data collection methods to choose from.
A few of the most common research methods include:
- Literature reviews
- Interviews and focus groups
- Pilot studies
- Observations
- Experiments
The method you choose depends on several factors, including your timeline, budget, and the structure of your question. If there is already a body of research on your topic, a literature review is a great place to start. If you are interested in opinions and behavior, consider an interview or focus group format. If you have more time or funding available, an experiment or pilot study may be a good fit for you.
Explanatory research data analysis
In order to ensure you are conducting your explanatory research correctly, be sure your analysis is definitively causal in nature, and not just correlated.
Always remember the phrase “correlation doesn’t mean causation.” Correlated variables are merely associated with one another: when one variable changes, so does the other. However, this isn’t necessarily due to a direct or indirect causal link.
Causation means that changes in the independent variable bring about changes in the dependent variable. In other words, there is a direct cause-and-effect relationship between variables.
Causal evidence must meet three criteria:
- Temporal: What you define as the “cause” must precede what you define as the “effect.”
- Variation: Intervention must be systematic between your independent variable and dependent variable.
- Non-spurious: Be careful that there are no mitigating factors or hidden third variables that confound your results.
Correlation doesn’t imply causation, but causation always implies correlation. In order to get conclusive causal results, you’ll need to conduct a full experimental design.
Step-by-step example of explanatory research
Your explanatory research design depends on the research method you choose to collect your data. In most cases, you’ll use an experiment to investigate potential causal relationships. We’ll walk you through the steps using an example.
Step 1: Develop the research question
The first step in conducting explanatory research is getting familiar with the topic you’re interested in, so that you can develop a research question.
Let’s say you’re interested in language retention rates in adults.
Step 2: Formulate a hypothesis
The next step is to address your expectations. In some cases, there is literature available on your subject or on a closely related topic that you can use as a foundation for your hypothesis. In other cases, the topic isn’t well studied, and you’ll have to develop your hypothesis based on your instincts or on existing literature on more distant topics.
Step 3: Design your methodology and collect your data
Next, decide what data collection and data analysis methods you will use and write them up. After carefully designing your research, you can begin to collect your data.
Step 4: Analyze your data and report results
After data collection is complete, proceed to analyze your data and report the results.
Step 5: Interpret your results and provide suggestions for future research
As you interpret the results, try to come up with explanations for the results that you did not expect. In most cases, you want to provide suggestions for future research.
Explanatory vs. exploratory research
It can be easy to confuse explanatory research with exploratory research. If you’re in doubt about the relationship between exploratory and explanatory research, just remember that exploratory research lays the groundwork for later explanatory research.
Exploratory research questions often begin with “what”. They are designed to guide future research and do not usually have conclusive results. Exploratory research is often utilized as a first step in your research process, to help you focus your research question and fine-tune your hypotheses.
Explanatory research questions often start with “why” or “how”. They help you study why and how a previously studied phenomenon takes place.
Advantages and disadvantages of explanatory research
Like any other research design, explanatory research has its trade-offs: while it provides a unique set of benefits, it also has significant downsides:
Advantages
- It gives more meaning to previous research. It helps fill in the gaps in existing analyses and provides information on the reasons behind phenomena.
- It is very flexible and often replicable, since the internal validity tends to be high when done correctly.
- As you can often use secondary research, explanatory research is often very cost- and time-effective, allowing you to utilize pre-existing resources to guide your research prior to committing to heavier analyses.
Disadvantages
- While explanatory research does help you solidify your theories and hypotheses, it usually lacks conclusive results.
- Results can be biased or inadmissible to a larger body of work and are not generally externally valid. You will likely have to conduct more robust (often quantitative) research later to bolster any possible findings gleaned from explanatory research.
- Coincidences can be mistaken for causal relationships, and it can sometimes be challenging to ascertain which is the causal variable and which is the effect.
Other interesting articles
If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with explanations and examples.
Methodology
Frequently asked questions about explanatory research
- What is explanatory research?
-
Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.
- What’s the difference between exploratory and explanatory research?
-
Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.
- When should I use explanatory research?
-
Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process, serving as a jumping-off point for future research.
- What’s the difference between quantitative and qualitative methods?
-
Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.
Quantitative methods allow you to systematically measure variables and test hypotheses. Qualitative methods allow you to explore concepts and experiences in more detail.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.